
Network Working Group J. Rosenberg
Request for Comments: 5360 Cisco Systems
Category: Standards Track G. Camarillo, Ed.
 Ericsson
 D. Willis
 Unaffiliated
 October 2008

 A Framework for Consent-Based Communications
 in the Session Initiation Protocol (SIP)

Status of This Memo

 This document specifies an Internet standards track protocol for the
 Internet community, and requests discussion and suggestions for
 improvements. Please refer to the current edition of the "Internet
 Official Protocol Standards" (STD 1) for the standardization state
 and status of this protocol. Distribution of this memo is unlimited.

Abstract

 SIP supports communications for several services, including real-time
 audio, video, text, instant messaging, and presence. In its current
 form, it allows session invitations, instant messages, and other
 requests to be delivered from one party to another without requiring
 explicit consent of the recipient. Without such consent, it is
 possible for SIP to be used for malicious purposes, including
 amplification and DoS (Denial of Service) attacks. This document
 identifies a framework for consent-based communications in SIP.

Rosenberg, et al. Standards Track [Page 1]

RFC 5360 Consent Framework October 2008

Table of Contents

 1. Introduction ..3
 2. Definitions and Terminology3
 3. Relays and Translations ...4
 4. Architecture ..6
 4.1. Permissions at a Relay6
 4.2. Consenting Manipulations on a Relay’s Translation Logic7
 4.3. Store-and-Forward Servers8
 4.4. Recipients Grant Permissions9
 4.5. Entities Implementing This Framework9
 5. Framework Operations ..9
 5.1. Amplification Avoidance11
 5.1.1. Relay’s Behavior12
 5.2. Subscription to the Permission Status12
 5.2.1. Relay’s Behavior13
 5.3. Request for Permission13
 5.3.1. Relay’s Behavior13
 5.4. Permission Document Structure15
 5.5. Permission Requested Notification16
 5.6. Permission Grant ..17
 5.6.1. Relay’s Behavior17
 5.6.1.1. SIP Identity17
 5.6.1.2. P-Asserted-Identity17
 5.6.1.3. Return Routability18
 5.6.1.4. SIP Digest19
 5.7. Permission Granted Notification19
 5.8. Permission Revocation19
 5.9. Request-Contained URI Lists20
 5.9.1. Relay’s Behavior21
 5.9.2. Definition of the 470 Response Code21
 5.9.3. Definition of the Permission-Missing Header Field ..22
 5.10. Registrations ..22
 5.11. Relays Generating Traffic towards Recipients25
 5.11.1. Relay’s Behavior25
 5.11.2. Definition of the Trigger-Consent Header Field25
 6. IANA Considerations ..26
 6.1. Registration of the 470 Response Code26
 6.2. Registration of the Trigger-Consent Header Field26
 6.3. Registration of the Permission-Missing Header Field26
 6.4. Registration of the target-uri Header Field Parameter26
 7. Security Considerations ..27
 8. Acknowledgments ..28
 9. References ...28
 9.1. Normative References28
 9.2. Informative References29

Rosenberg, et al. Standards Track [Page 2]

RFC 5360 Consent Framework October 2008

1. Introduction

 The Session Initiation Protocol (SIP) [RFC3261] supports
 communications for several services, including real-time audio,
 video, text, instant messaging, and presence. This communication is
 established by the transmission of various SIP requests (such as
 INVITE and MESSAGE [RFC3428]) from an initiator to the recipient with
 whom communication is desired. Although a recipient of such a SIP
 request can reject the request, and therefore decline the session, a
 network of SIP proxy servers will deliver a SIP request to its
 recipients without their explicit consent.

 Receipt of these requests without explicit consent can cause a number
 of problems. These include amplification and DoS (Denial of Service)
 attacks. These problems are described in more detail in a companion
 requirements document [RFC4453].

 This specification defines a basic framework for adding consent-based
 communication to SIP.

2. Definitions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Recipient URI: The Request-URI of an outgoing request sent by an
 entity (e.g., a user agent or a proxy). The sending of such
 request can have been the result of a translation operation.

 Relay: Any SIP server, be it a proxy, B2BUA (Back-to-Back User
 Agent), or some hybrid, that receives a request, translates its
 Request-URI into one or more next-hop URIs (i.e., recipient URIs),
 and delivers the request to those URIs.

 Target URI: The Request-URI of an incoming request that arrives to a
 relay that will perform a translation operation.

 Translation logic: The logic that defines a translation operation at
 a relay. This logic includes the translation’s target and
 recipient URIs.

 Translation operation: Operation by which a relay translates the
 Request-URI of an incoming request (i.e., the target URI) into one
 or more URIs (i.e., recipient URIs) that are used as the Request-
 URIs of one or more outgoing requests.

Rosenberg, et al. Standards Track [Page 3]

RFC 5360 Consent Framework October 2008

3. Relays and Translations

 Relays play a key role in this framework. A relay is defined as any
 SIP server, be it a proxy, B2BUA (Back-to-Back User Agent), or some
 hybrid, that receives a request, translates its Request-URI into one
 or more next-hop URIs, and delivers the request to those URIs. The
 Request-URI of the incoming request is referred to as ’target URI’
 and the destination URIs of the outgoing requests are referred to as
 ’recipient URIs’, as shown in Figure 1.

 +---------------+ recipient URI
 | |---------------->
 | |
 target URI | Translation | [...]
 -------------->| Operation |
 | | recipient URI
 | |---------------->
 +---------------+

 Figure 1: Translation Operation

 Thus, an essential aspect of a relay is that of translation. When a
 relay receives a request, it translates the Request-URI (target URI)
 into one or more additional URIs (recipient URIs). Through this
 translation operation, the relay can create outgoing requests to one
 or more additional recipient URIs, thus creating the consent problem.

 The consent problem is created by two types of translations:
 translations based on local data and translations that involve
 amplifications.

 Translation operations based on local policy or local data (such as
 registrations) are the vehicle by which a request is delivered
 directly to an endpoint, when it would not otherwise be possible to.
 In other words, if a spammer has the address of a user,
 ’sip:user@example.com’, it cannot deliver a MESSAGE request to the UA
 (user agent) of that user without having access to the registration
 data that maps ’sip:user@example.com’ to the user agent on which that
 user is present. Thus, it is the usage of this registration data,
 and more generally, the translation logic, that is expected to be
 authorized in order to prevent undesired communications. Of course,
 if the spammer knows the address of the user agent, it will be able
 to deliver requests directly to it.

 Translation operations that result in more than one recipient URI are
 a source of amplification. Servers that do not perform translations,
 such as outbound proxy servers, do not cause amplification. On the
 other hand, servers that perform translations (e.g., inbound proxies

Rosenberg, et al. Standards Track [Page 4]

RFC 5360 Consent Framework October 2008

 authoritatively responsible for a SIP domain) may cause amplification
 if the user can be reached at multiple endpoints (thereby resulting
 in multiple recipient URIs).

 Figure 2 shows a relay that performs translations. The user agent
 client in the figure sends a SIP request to a URI representing a
 resource in the domain ’example.com’ (sip:resource@example.com).
 This request can pass through a local outbound proxy (not shown), but
 eventually arrives at a server authoritative for the domain
 ’example.com’. This server, which acts as a relay, performs a
 translation operation, translating the target URI into one or more
 recipient URIs, which can (but need not) belong to the domain
 ’example.com’. This relay can be, for instance, a proxy server or a
 URI-list service [RFC5363].

 +-------+
 | |
 >| UA |
 / | |
 / +-------+
 /
 /
 +-----------------------+ /
 | | /
 +-----+ | Relay | / +-------+
 | | | |/ | |
 | UA |------>| |-------->| Proxy |
 | | |+---------------------+|\ | |
 +-----+ || Translation || \ +-------+
 || Logic || \
 |+---------------------+| \ [...]
 +-----------------------+ \
 \
 \ +-------+
 \ | |
 >| B2BUA |
 | |
 +-------+

 Figure 2: Relay Performing a Translation

 This framework allows potential recipients of a translation to agree
 to be actual recipients by giving the relay performing the
 translation permission to send them traffic.

Rosenberg, et al. Standards Track [Page 5]

RFC 5360 Consent Framework October 2008

4. Architecture

 Figure 3 shows the architectural elements of this framework. The
 manipulation of a relay’s translation logic typically causes the
 relay to send a permission request, which in turn causes the
 recipient to grant or deny the relay permissions for the translation.
 Section 4.1 describes the role of permissions at a relay. Section
 4.2 discusses the actions taken by a relay when its translation logic
 is manipulated by a client. Section 4.3 discusses store-and-forward
 servers and their functionality. Section 4.4 describes how potential
 recipients can grant a relay permissions to add them to the relay’s
 translation logic. Section 4.5 discusses which entities need to
 implement this framework.

 +-----------------------+ Permission +-------------+
 | | Request | |
 +--------+ | Relay |----------->| Store & Fwd |
 | | | | | Server |
 | Client | | | | |
 | | |+-------+ +-----------+| +-------------+
 +--------+ ||Transl.| |Permissions|| |
 | ||Logic | | || Permission |
 | |+-------+ +-----------+| Request |
 | +-----------------------+ V
 | ^ ^ +-------------+
 | Manipulation | | Permission Grant | |
 +---------------+ +-------------------| Recipient |
 | |
 +-------------+

 Figure 3: Reference Architecture

4.1. Permissions at a Relay

 Relays implementing this framework obtain and store permissions
 associated to their translation logic. These permissions indicate
 whether or not a particular recipient has agreed to receive traffic
 at any given time. Recipients that have not given the relay
 permission to send them traffic are simply ignored by the relay when
 performing a translation.

 In principle, permissions are valid as long as the context where they
 were granted is valid or until they are revoked. For example, the
 permissions obtained by a URI-list SIP service that distributes
 MESSAGE requests to a set of recipients will be valid as long as the
 URI-list SIP service exists or until the permissions are revoked.

Rosenberg, et al. Standards Track [Page 6]

RFC 5360 Consent Framework October 2008

 Additionally, if a recipient is removed from a relay’s translation
 logic, the relay SHOULD delete the permissions related to that
 recipient. For example, if the registration of a contact URI expires
 or is otherwise terminated, the registrar deletes the permissions
 related to that contact address.

 It is also RECOMMENDED that relays request recipients to refresh
 their permissions periodically. If a recipient fails to refresh its
 permissions for a given period of time, the relay SHOULD delete the
 permissions related to that recipient.

 This framework does not provide any guidance for the values of the
 refreshment intervals because different applications can have
 different requirements to set those values. For example, a relay
 dealing with recipients that do not implement this framework may
 choose to use longer intervals between refreshes. The refresh
 process in such recipients has to be performed manually by their
 users (since the recipients do not implement this framework), and
 having too short refresh intervals may become too heavy a burden
 for those users.

4.2. Consenting Manipulations on a Relay’s Translation Logic

 This framework aims to ensure that any particular relay only performs
 translations towards destinations that have given the relay
 permission to perform such a translation. Consequently, when the
 translation logic of a relay is manipulated (e.g., a new recipient
 URI is added), the relay obtains permission from the new recipient in
 order to install the new translation logic. Relays ask recipients
 for permission using MESSAGE [RFC3428] requests.

 For example, the relay hosting the URI-list service at
 ’sip:friends@example.com’ performs a translation from that target URI
 to a set of recipient URIs. When a client (e.g., the administrator
 of that URI-list service) adds ’bob@example.org’ as a new recipient
 URI, the relay sends a MESSAGE request to ’sip:bob@example.org’
 asking whether or not it is OK to perform the translation from
 ’sip:friends@example.com’ to ’sip:bob@example.org’. The MESSAGE
 request carries in its message body a permission document that
 describes the translation for which permissions are being requested
 and a human-readable part that also describes the translation. If
 the answer is positive, the new translation logic is installed at the
 relay. That is, the new recipient URI is added.

 The human-readable part is included so that user agents that do
 not understand permission documents can still process the request
 and display it in a sensible way to the user.

Rosenberg, et al. Standards Track [Page 7]

RFC 5360 Consent Framework October 2008

 The mechanism to be used to manipulate the translation logic of a
 particular relay depends on the relay. Two existing mechanisms to
 manipulate translation logic are XML Configuration Access Protocol
 (XCAP) [RFC4825] and REGISTER transactions.

 Section 5 uses a URI-list service whose translation logic is
 manipulated with XCAP as an example of a translation, in order to
 specify this framework. Section 5.10 discusses how to apply this
 framework to registrations, which are a different type of
 translation.

 In any case, relays implementing this framework SHOULD have a means
 to indicate that a particular recipient URI is in the states
 specified in [RFC5362] (i.e., pending, waiting, error, denied, or
 granted).

4.3. Store-and-Forward Servers

 When a MESSAGE request with a permission document arrives to the
 recipient URI to which it was sent by the relay, the receiving user
 can grant or deny the permission needed to perform the translation.
 However, the receiving user may not be available when the MESSAGE
 request arrives, or it may have expressed preferences to block all
 incoming requests for a certain time period. In such cases, a
 store-and-forward server can act as a substitute for the user and
 buffer the incoming MESSAGE requests, which are subsequently
 delivered to the user when he or she is available again.

 There are several mechanisms to implement store-and-forward message
 services (e.g., with an instant message to email gateway). Any of
 these mechanisms can be used between a user agent and its store-and-
 forward server as long as they agree on which mechanism to use.
 Therefore, this framework does not make any provision for the
 interface between user agents and their store-and-forward servers.

 Note that the same store-and-forward message service can handle
 all incoming MESSAGE requests for a user while they are offline,
 not only those MESSAGE requests with a permission document in
 their bodies.

 Even though store-and-forward servers perform a useful function and
 they are expected to be deployed in most domains, some domains will
 not deploy them from the outset. However, user agents and relays in
 domains without store-and-forward servers can still use this consent
 framework.

Rosenberg, et al. Standards Track [Page 8]

RFC 5360 Consent Framework October 2008

 When a relay requests permissions from an offline user agent that
 does not have an associated store-and-forward server, the relay will
 obtain an error response indicating that its MESSAGE request could
 not be delivered. The client that attempted to add the offline user
 to the relay’s translation logic will be notified about the error
 (e.g., using the Pending Additions event package [RFC5362]). This
 client MAY attempt to add the same user at a later point, hopefully
 when the user is online. Clients can discover whether or not a user
 is online by using a presence service, for instance.

4.4. Recipients Grant Permissions

 Permission documents generated by a relay include URIs that can be
 used by the recipient of the document to grant or deny the relay the
 permission described in the document. Relays always include SIP URIs
 and can include HTTP [RFC2616] URIs for this purpose. Consequently,
 recipients provide relays with permissions using SIP PUBLISH requests
 or HTTP GET requests.

4.5. Entities Implementing This Framework

 The goal of this framework is to keep relays from executing
 translations towards unwilling recipients. Therefore, all relays
 MUST implement this framework in order to avoid being used to perform
 attacks (e.g., amplification attacks).

 This framework has been designed with backwards compatibility in mind
 so that legacy user agents (i.e., user agents that do not implement
 this framework) can act both as clients and recipients with an
 acceptable level of functionality. However, it is RECOMMENDED that
 user agents implement this framework, which includes supporting the
 Pending Additions event package specified in [RFC5362], the format
 for permission documents specified in [RFC5361], and the header
 fields and response code specified in this document, in order to
 achieve full functionality.

 The only requirement that this framework places on store-and-forward
 servers is that they need to be able to deliver encrypted and
 integrity-protected messages to their user agents, as discussed in
 Section 7. However, this is not a requirement specific to this
 framework but a general requirement for store-and-forward servers.

5. Framework Operations

 This section specifies this consent framework using an example of the
 prototypical call flow. The elements described in Section 4 (i.e.,
 relays, translations, and store-and-forward servers) play an
 essential role in this call flow.

Rosenberg, et al. Standards Track [Page 9]

RFC 5360 Consent Framework October 2008

 Figure 4 shows the complete process to add a recipient URI
 (’sip:B@example.com’) to the translation logic of a relay. User A
 attempts to add ’sip:B@example.com’ as a new recipient URI to the
 translation logic of the relay (1). User A uses XCAP [RFC4825] and
 the XML (Extensible Markup Language) format for representing resource
 lists [RFC4826] to perform this addition. Since the relay does not
 have permission from ’sip:B@example.com’ to perform translations
 towards that URI, the relay places ’sip:B@example.com’ in the pending
 state, as specified in [RFC5362].

Rosenberg, et al. Standards Track [Page 10]

RFC 5360 Consent Framework October 2008

 A@example.com Relay B’s Store & Fwd B@example.com
 Server

 |(1) Add Recipient | | |
 | sip:B@example.com | |
 |--------------->| | |
 |(2) HTTP 202 (Accepted) | |
 |<---------------| | |
 | |(3) MESSAGE sip:B@example |
 | | Permission Document |
 | |--------------->| |
 | |(4) 202 Accepted| |
 | |<---------------| |
 |(5) SUBSCRIBE | | |
 | Event: pending-additions | |
 |--------------->| | |
 |(6) 200 OK | | |
 |<---------------| | |
 |(7) NOTIFY | | |
 |<---------------| | |
 |(8) 200 OK | | |
 |--------------->| | |
 | | | |User B goes
 | | | | online
 | | |(9) Request for |
 | | | stored messages
 | | |<---------------|
 | | |(10) Delivery of|
 | | | stored messages
 | | |--------------->|
 | |(11) PUBLISH uri-up |
 | |<--------------------------------|
 | |(12) 200 OK | |
 | |-------------------------------->|
 |(13) NOTIFY | | |
 |<---------------| | |
 |(14) 200 OK | | |
 |--------------->| | |

 Figure 4: Prototypical Call Flow

5.1. Amplification Avoidance

 Once ’sip:B@example.com’ is in the pending state, the relay needs to
 ask user B for permission by sending a MESSAGE request to
 ’sip:B@example.com’. However, the relay needs to ensure that it is
 not used as an amplifier to launch amplification attacks.

Rosenberg, et al. Standards Track [Page 11]

RFC 5360 Consent Framework October 2008

 In such an attack, the attacker would add a large number of recipient
 URIs to the translation logic of a relay. The relay would then send
 a MESSAGE request to each of those recipient URIs. The bandwidth
 generated by the relay would be much higher than the bandwidth used
 by the attacker to add those recipient URIs to the translation logic
 of the relay.

 This framework uses a credit-based authorization mechanism to avoid
 the attack just described. It requires users adding new recipient
 URIs to a translation to generate an amount of bandwidth that is
 comparable to the bandwidth the relay will generate when sending
 MESSAGE requests towards those recipient URIs. When XCAP is used,
 this requirement is met by not allowing clients to add more than one
 URI per HTTP transaction. When a REGISTER transaction is used, this
 requirement is met by not allowing clients to register more than one
 contact per REGISTER transaction.

5.1.1. Relay’s Behavior

 Relays implementing this framework MUST NOT allow clients to add more
 than one recipient URI per transaction. If a client using XCAP
 attempts to add more than one recipient URI in a single HTTP
 transaction, the XCAP server SHOULD return an HTTP 409 (Conflict)
 response. The XCAP server SHOULD describe the reason for the refusal
 in an XML body using the <constraint-failure> element, as described
 in [RFC4825]. If a client attempts to register more than one contact
 in a single REGISTER transaction, the registrar SHOULD return a SIP
 403 response and explain the reason for the refusal in its reason
 phrase (e.g., maximum one contact per registration).

5.2. Subscription to the Permission Status

 Clients need a way to be informed about the status of the operations
 they requested. Otherwise, users can be waiting for an operation to
 succeed when it has actually already failed. In particular, if the
 target of the request for consent was not reachable and did not have
 an associated store-and-forward server, the client needs to know to
 retry the request later. The Pending Additions SIP event package
 [RFC5362] is a way to provide clients with that information.

 Clients can use the Pending Additions SIP event package to be
 informed about the status of the operations they requested. That is,
 the client will be informed when an operation (e.g., the addition of
 a recipient URI to a relay’s translation logic) is authorized (and
 thus executed) or rejected. Clients use the target URI of the SIP
 translation being manipulated to subscribe to the ’pending-additions’
 event package.

Rosenberg, et al. Standards Track [Page 12]

RFC 5360 Consent Framework October 2008

 In our example, after receiving the response from the relay (2), user
 A subscribes to the Pending Additions event package at the relay (5).
 This subscription keeps user A informed about the status of the
 permissions (e.g., granted or denied) the relay will obtain.

5.2.1. Relay’s Behavior

 Relays SHOULD support the Pending Additions SIP event package
 specified in [RFC5362].

5.3. Request for Permission

 A relay requests permissions from potential recipients to add them to
 its translation logic using MESSAGE requests. In our example, on
 receiving the request to add user B to the translation logic of the
 relay (1), the relay generates a MESSAGE request (3) towards
 ’sip:B@example.com’. This MESSAGE request carries a permission
 document, which describes the translation that needs to be authorized
 and carries a set of URIs to be used by the recipient to grant or to
 deny the relay permission to perform that translation. Since user B
 is offline, the MESSAGE request will be buffered by user B’s store-
 and-forward server. User B will later go online and authorize the
 translation by using one of those URIs, as described in Section 5.6.
 The MESSAGE request also carries a body part that contains the same
 information as the permission document but in a human-readable
 format.

 When user B uses one of the URIs in the permission document to grant
 or deny permissions, the relay needs to make sure that it was
 actually user B using that URI, and not an attacker. The relay can
 use any of the methods described in Section 5.6 to authenticate the
 permission document.

5.3.1. Relay’s Behavior

 Relays that implement this framework MUST obtain permissions from
 potential recipients before adding them to their translation logic.
 Relays request permissions from potential recipients using MESSAGE
 requests.

 Section 5.6 describes the methods a relay can use to authenticate
 those recipients giving the relay permission to perform a particular
 translation. These methods are SIP identity [RFC4474],
 P-Asserted-Identity [RFC3325], a return routability test, or SIP
 digest. Relays that use the method consisting of a return
 routability test have to send their MESSAGE requests to a SIPS URI,
 as specified in Section 5.6.

Rosenberg, et al. Standards Track [Page 13]

RFC 5360 Consent Framework October 2008

 MESSAGE requests sent to request permissions MUST include a
 permission document and SHOULD include a human-readable part in their
 bodies. The human-readable part contains the same information as the
 permission document (but in a human-readable format), including the
 URIs to grant and deny permissions. User agents that do not
 understand permission documents can still process the request and
 display it in a sensible way to the user, as they would display any
 other instant message. This way, even if the user agent does not
 implement this framework, the (human) user will be able to manually
 click on the correct URI in order to grant or deny permissions. The
 following is an example of a MESSAGE request that carries a human-
 readable part and a permission document, which follows the format
 specified in [RFC5361], in its body. Not all header fields are shown
 for simplicity reasons.

 MESSAGE sip:bob@example.org SIP/2.0
 From: <sip:alices-friends@example.com>;tag=12345678
 To: <sip:bob@example.org>
 Content-Type: multipart/mixed;boundary="boundary1"

 --boundary1
 Content-Type: text/plain

 If you consent to receive traffic sent to
 <sip:alices-friends@example.com>, please use one of the following
 URIs: <sips:grant-1awdch5Fasddfce34@example.com> or
 <https://example.com/grant-1awdch5Fasddfce34>. Otherwise, use one of
 the following URIs: <sips:deny-23rCsdfgvdT5sdfgye@example.com> or
 <https://example.com/deny-23rCsdfgvdT5sdfgye>.
 --boundary1
 Content-Type: application/auth-policy+xml

 <?xml version="1.0" encoding="UTF-8"?>
 <cp:ruleset
 xmlns="urn:ietf:params:xml:ns:consent-rules"
 xmlns:cp="urn:ietf:params:xml:ns:common-policy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <cp:rule id="f1">
 <cp:conditions>
 <cp:identity>
 <cp:many/>
 </cp:identity>
 <recipient>
 <cp:one id="sip:bob@example.org"/>
 </recipient>
 <target>
 <cp:one id="sip:alices-friends@example.com"/>
 </target>

Rosenberg, et al. Standards Track [Page 14]

RFC 5360 Consent Framework October 2008

 </cp:conditions>
 <cp:actions>
 <trans-handling
 perm-uri="sips:grant-1awdch5Fasddfce34@example.com">
 grant</trans-handling>
 <trans-handling
 perm-uri="https://example.com/grant-1awdch5Fasddfce34">
 grant</trans-handling>
 <trans-handling
 perm-uri="sips:deny-23rCsdfgvdT5sdfgye@example.com">
 deny</trans-handling>
 <trans-handling
 perm-uri="https://example.com/deny-23rCsdfgvdT5sdfgye">
 deny</trans-handling>
 </cp:actions>
 <cp:transformations/>
 </cp:rule>
 </cp:ruleset>
 --boundary1--

5.4. Permission Document Structure

 A permission document is the representation (e.g., encoded in XML) of
 a permission. A permission document contains several pieces of data:

 Identity of the Sender: A URI representing the identity of the
 sender for whom permissions are granted.

 Identity of the Original Recipient: A URI representing the identity
 of the original recipient, which is used as the input for the
 translation operation. This is also called the target URI.

 Identity of the Final Recipient: A URI representing the result of
 the translation. The permission grants ability for the sender to
 send requests to the target URI and for a relay receiving those
 requests to forward them to this URI. This is also called the
 recipient URI.

 URIs to Grant Permission: URIs that recipients can use to grant the
 relay permission to perform the translation described in the
 document. Relays MUST support the use of SIP and SIPS URIs in
 permission documents and MAY support the use of HTTP and HTTPS
 URIs.

Rosenberg, et al. Standards Track [Page 15]

RFC 5360 Consent Framework October 2008

 URIs to Deny Permission: URIs that recipients can use to deny the
 relay permission to perform the translation described in the
 document. Relays MUST support the use of SIP and SIPS URIs in
 permission documents and MAY support the use of HTTP and HTTPS
 URIs.

 Permission documents can contain wildcards. For example, a
 permission document can request permission for any relay to forward
 requests coming from a particular sender to a particular recipient.
 Such a permission document would apply to any target URI. That is,
 the field containing the identity of the original recipient would
 match any URI. However, the recipient URI MUST NOT be wildcarded.

 Entities implementing this framework MUST support the format for
 permission documents defined in [RFC5361] and MAY support other
 formats.

 In our example, the permission document in the MESSAGE request (3)
 sent by the relay contains the following values:

 Identity of the Sender: Any sender

 Identity of the Original Recipient: sip:friends@example.com

 Identity of the Final Recipient: sip:B@example.com

 URI to Grant Permission: sips:grant-1awdch5Fasddfce34@example.com

 URI to Grant Permission: https://example.com/grant-1awdch5Fasddfce34

 URI to Deny Permission: sips:deny-23rCsdfgvdT5sdfgye@example.com

 URI to Deny Permission: https://example.com/deny-23rCsdfgvdT5sdfgye

 It is expected that the Sender field often contains a wildcard.
 However, scenarios involving request-contained URI lists, such as the
 one described in Section 5.9, can require permission documents that
 apply to a specific sender. In cases where the identity of the
 sender matters, relays MUST authenticate senders.

5.5. Permission Requested Notification

 On receiving the MESSAGE request (3), user B’s store-and-forward
 server stores it because user B is offline at that point. When user
 B goes online, user B fetches all the requests its store-and-forward
 server has stored (9).

Rosenberg, et al. Standards Track [Page 16]

RFC 5360 Consent Framework October 2008

5.6. Permission Grant

 A recipient gives a relay permission to execute the translation
 described in a permission document by sending a SIP PUBLISH or an
 HTTP GET request to one of the URIs to grant permissions contained in
 the document. Similarly, a recipient denies a relay permission to
 execute the translation described in a permission document by sending
 a SIP PUBLISH or an HTTP GET request to one of the URIs to deny
 permissions contained in the document. Requests to grant or deny
 permissions contain an empty body.

 In our example, user B obtains the permission document (10) that was
 received earlier by its store-and-forward server in the MESSAGE
 request (3). User B authorizes the translation described in the
 permission document received by sending a PUBLISH request (11) to the
 SIP URI to grant permissions contained in the permission document.

5.6.1. Relay’s Behavior

 Relays MUST ensure that the SIP PUBLISH or the HTTP GET request
 received was generated by the recipient of the translation and not by
 an attacker. Relays can use four methods to authenticate those
 requests: SIP identity, P-Asserted-Identity [RFC3325], a return
 routability test, or SIP digest. While return routability tests can
 be used to authenticate both SIP PUBLISH and HTTP GET requests, SIP
 identity, P-Asserted-Identity, and SIP digest can only be used to
 authenticate SIP PUBLISH requests. SIP digest can only be used to
 authenticate recipients that share a secret with the relay (e.g.,
 recipients that are in the same domain as the relay).

5.6.1.1. SIP Identity

 The SIP identity [RFC4474] mechanism can be used to authenticate the
 sender of a PUBLISH request. The relay MUST check that the
 originator of the PUBLISH request is the owner of the recipient URI
 in the permission document. Otherwise, the PUBLISH request SHOULD be
 responded with a 401 (Unauthorized) response and MUST NOT be
 processed further.

5.6.1.2. P-Asserted-Identity

 The P-Asserted-Identity [RFC3325] mechanism can also be used to
 authenticate the sender of a PUBLISH request. However, as discussed
 in [RFC3325], this mechanism is intended to be used only within
 networks of trusted SIP servers. That is, the use of this mechanism
 is only applicable inside an administrative domain with previously
 agreed-upon policies.

Rosenberg, et al. Standards Track [Page 17]

RFC 5360 Consent Framework October 2008

 The relay MUST check that the originator of the PUBLISH request is
 the owner of the recipient URI in the permission document.
 Otherwise, the PUBLISH request SHOULD be responded with a 401
 (Unauthorized) response and MUST NOT be processed further.

5.6.1.3. Return Routability

 SIP identity provides a good authentication mechanism for incoming
 PUBLISH requests. Nevertheless, SIP identity is not widely available
 on the public Internet yet. That is why an authentication mechanism
 that can already be used at this point is needed.

 Return routability tests do not provide the same level of security as
 SIP identity, but they provide a better-than-nothing security level
 in architectures where the SIP identity mechanism is not available
 (e.g., the current Internet). The relay generates an unguessable URI
 (i.e., with a cryptographically random user part) and places it in
 the permission document in the MESSAGE request (3). The recipient
 needs to send a SIP PUBLISH request or an HTTP GET request to that
 URI. Any incoming request sent to that URI SHOULD be considered
 authenticated by the relay.

 Note that the return routability method is the only one that
 allows the use of HTTP URIs in permission documents. The other
 methods require the use of SIP URIs.

 Relays using a return routability test to perform this authentication
 MUST send the MESSAGE request with the permission document to a SIPS
 URI. This ensures that attackers do not get access to the
 (unguessable) URI. Thus, the only user able to use the (unguessable)
 URI is the receiver of the MESSAGE request. Similarly, permission
 documents sent by relays using a return routability test MUST only
 contain secure URIs (i.e., SIPS and HTTPS) to grant and deny
 permissions. A part of these URIs (e.g., the user part of a SIPS
 URI) MUST be cryptographically random with at least 32 bits of
 randomness.

 Relays can transition from return routability tests to SIP identity
 by simply requiring the use of SIP identity for incoming PUBLISH
 requests. That is, such a relay would reject PUBLISH requests that
 did not use SIP identity.

Rosenberg, et al. Standards Track [Page 18]

RFC 5360 Consent Framework October 2008

5.6.1.4. SIP Digest

 The SIP digest mechanism can be used to authenticate the sender of a
 PUBLISH request as long as that sender shares a secret with the
 relay. The relay MUST check that the originator of the PUBLISH
 request is the owner of the recipient URI in the permission document.
 Otherwise, the PUBLISH request SHOULD be responded with a 401
 (Unauthorized) response and MUST NOT be processed further.

5.7. Permission Granted Notification

 On receiving the PUBLISH request (11), the relay sends a NOTIFY
 request (13) to inform user A that the permission for the translation
 has been received and that the translation logic at the relay has
 been updated. That is, ’sip:B@example.com’ has been added as a
 recipient URI.

5.8. Permission Revocation

 At any time, if a recipient wants to revoke any permission, it uses
 the URI it received in the permission document to deny the
 permissions it previously granted. If a recipient loses this URI for
 some reason, it needs to wait until it receives a new request
 produced by the translation. Such a request will contain a Trigger-
 Consent header field with a URI. That Trigger-Consent header field
 will have a target-uri header field parameter identifying the target
 URI of the translation. The recipient needs to send a PUBLISH
 request with an empty body to the URI in the Trigger-Consent header
 field in order to receive a MESSAGE request from the relay. Such a
 MESSAGE request will contain a permission document with a URI to
 revoke the permission that was previously granted.

 Figure 5 shows an example of how a user that lost the URI to revoke
 permissions at a relay can obtain a new URI using the Trigger-Consent
 header field of an incoming request. The user rejects an incoming
 INVITE (1) request, which contains a Trigger-Consent header field.
 Using the URI in that header field, the user sends a PUBLISH request
 (4) to the relay. On receiving the PUBLISH request (4), the relay
 generates a MESSAGE request (6) towards the user. Finally, the user
 revokes the permissions by sending a PUBLISH request (8) to the
 relay.

Rosenberg, et al. Standards Track [Page 19]

RFC 5360 Consent Framework October 2008

 Relay B@example.com
 |(1) INVITE |
 | Trigger-Consent: sip:123@relay.example.com
 | ;target-uri="sip:friends@relay.example.com"
 |---------------------------->|
 |(2) 603 Decline |
 |<----------------------------|
 |(3) ACK |
 |---------------------------->|
 |(4) PUBLISH sip:123@relay.example.com
 |<----------------------------|
 |(5) 200 OK |
 |---------------------------->|
 |(6) MESSAGE sip:B@example |
 | Permission Document |
 |---------------------------->|
 |(7) 200 OK |
 |<----------------------------|
 |(8) PUBLISH uri-deny |
 |<----------------------------|
 |(9) 200 OK |
 |---------------------------->|

 Figure 5: Permission Revocation

5.9. Request-Contained URI Lists

 In the scenarios described so far, a user adds recipient URIs to the
 translation logic of a relay. However, the relay does not perform
 translations towards those recipient URIs until permissions are
 obtained.

 URI-list services using request-contained URI lists are a special
 case because the selection of recipient URIs is performed at the same
 time as the communication attempt. A user places a set of recipient
 URIs in a request and sends it to a relay so that the relay sends a
 similar request to all those recipient URIs.

 Relays implementing this consent framework and providing request-
 contained URI-list services behave in a slightly different way than
 the relays described so far. This type of relay also maintains a
 list of recipient URIs for which permissions have been received.
 Clients also manipulate this list using a manipulation mechanism
 (e.g., XCAP). Nevertheless, this list does not represent the
 recipient URIs of every translation performed by the relay. This
 list just represents all the recipient URIs for which permissions
 have been received -- that is, the set of URIs that will be accepted

Rosenberg, et al. Standards Track [Page 20]

RFC 5360 Consent Framework October 2008

 if a request containing a URI-list arrives to the relay. This set of
 URIs is a superset of the recipient URIs of any particular
 translation the relay performs.

5.9.1. Relay’s Behavior

 On receiving a request-contained URI list, the relay checks whether
 or not it has permissions for all the URIs contained in the incoming
 URI list. If it does, the relay performs the translation. If it
 lacks permissions for one or more URIs, the relay MUST NOT perform
 the translation and SHOULD return an error response.

 A relay that receives a request-contained URI list with a URI for
 which the relay has no permissions SHOULD return a 470 (Consent
 Needed) response. The relay SHOULD add a Permission-Missing header
 field with the URIs for which the relay has no permissions.

 Figure 6 shows a relay that receives a request (1) that contains URIs
 for which the relay does not have permission (the INVITE carries the
 recipient URIs in its message body). The relay rejects the request
 with a 470 (Consent Needed) response (2). That response contains a
 Permission-Missing header field with the URIs for which there was no
 permission.

 A@example.com Relay

 |(1) INVITE |
 | sip:B@example.com |
 | sip:C@example.com |
 |---------------------->|
 |(2) 470 Consent Needed |
 | Permission-Missing: sip:C@example.com
 |<----------------------|
 |(3) ACK |
 |---------------------->|

 Figure 6: INVITE with a URI List in Its Body

5.9.2. Definition of the 470 Response Code

 A 470 (Consent Needed) response indicates that the request that
 triggered the response contained a URI list with at least one URI for
 which the relay had no permissions. A user agent server generating a
 470 (Consent Needed) response SHOULD include a Permission-Missing
 header field in it. This header field carries the URI or URIs for
 which the relay had no permissions.

Rosenberg, et al. Standards Track [Page 21]

RFC 5360 Consent Framework October 2008

 A user agent client receiving a 470 (Consent Needed) response without
 a Permission-Missing header field needs to use an alternative
 mechanism (e.g., XCAP) to discover for which URI or URIs there were
 no permissions.

 A client receiving a 470 (Consent Needed) response uses a
 manipulation mechanism (e.g., XCAP) to add those URIs to the relay’s
 list of URIs. The relay will obtain permissions for those URIs as
 usual.

5.9.3. Definition of the Permission-Missing Header Field

 Permission-Missing header fields carry URIs for which a relay did not
 have permissions. The following is the augmented Backus-Naur Form
 (BNF) [RFC5234] syntax of the Permission-Missing header field. Some
 of its elements are defined in [RFC3261].

 Permission-Missing = "Permission-Missing" HCOLON per-miss-spec
 *(COMMA per-miss-spec)
 per-miss-spec = (name-addr / addr-spec)
 *(SEMI generic-param)

 The following is an example of a Permission-Missing header field:

 Permission-Missing: sip:C@example.com

5.10. Registrations

 Even though the example used to specify this framework has been a
 URI-list service, this framework applies to any type of translation
 (i.e., not only to URI-list services). Registrations are a different
 type of translations that deserve discussion.

 Registrations are a special type of translations. The user
 registering has a trust relationship with the registrar in its home
 domain. This is not the case when a user gives any type of
 permissions to a relay in a different domain.

 Traditionally, REGISTER transactions have performed two operations at
 the same time: setting up a translation and authorizing the use of
 that translation. For example, a user registering its current
 contact URI is giving permission to the registrar to forward traffic
 sent to the user’s AoR (Address of Record) to the registered contact
 URI. This works fine when the entity registering is the same as the
 one that will be receiving traffic at a later point (e.g., the entity

Rosenberg, et al. Standards Track [Page 22]

RFC 5360 Consent Framework October 2008

 receives traffic over the same connection used for the registration
 as described in [OUTBOUND]). However, this schema creates some
 potential attacks that relate to third-party registrations.

 An attacker binds, via a registration, his or her AoR with the
 contact URI of a victim. Now the victim will receive unsolicited
 traffic that was originally addressed to the attacker.

 The process of authorizing a registration is shown in Figure 7. User
 A performs a third-party registration (1) and receives a 202
 (Accepted) response (2).

 Since the relay does not have permission from
 ’sip:a@ws123.example.com’ to perform translations towards that
 recipient URI, the relay places ’sip:a@ws123.example.com’ in the
 ’pending’ state. Once ’sip:a@ws123.example.com’ is in the
 ’Permission Pending’ state, the registrar needs to ask
 ’sip:a@ws123.example.com’ for permission by sending a MESSAGE request
 (3).

 After receiving the response from the relay (2), user A subscribes to
 the Pending Additions event package at the registrar (5). This
 subscription keeps the user informed about the status of the
 permissions (e.g., granted or denied) the registrar will obtain. The
 rest of the process is similar to the one described in Section 5.

Rosenberg, et al. Standards Track [Page 23]

RFC 5360 Consent Framework October 2008

 A@example.com Registrar a@ws123.example.com

 |(1) REGISTER | |
 | Contact: sip:a@ws123.example.com |
 |------------------>| |
 |(2) 202 Accepted OK| |
 |<------------------| |
 | |(3) MESSAGE sip:a@ws123.example
 | | Permission Document
 | |------------------>|
 | |(4) 200 OK |
 | |<------------------|
 |(5) SUBSCRIBE | |
 | Event: pending-additions |
 |------------------>| |
 |(6) 200 OK | |
 |<------------------| |
 |(7) NOTIFY | |
 |<------------------| |
 |(8) 200 OK | |
 |------------------>| |
 | |(9) PUBLISH uri-up |
 | |<------------------|
 | |(10) 200 OK |
 | |------------------>|
 |(11) NOTIFY | |
 |<------------------| |
 |(12) 200 OK | |
 |------------------>| |

 Figure 7: Registration

 Permission documents generated by registrars are typically very
 general. For example, in one such document a registrar can ask a
 recipient for permission to forward any request from any sender to
 the recipient’s URI. This is the type of granularity that this
 framework intends to provide for registrations. Users who want to
 define how incoming requests are treated with a finer granularity
 (e.g., requests from user A are only accepted between 9:00 and 11:00)
 will have to use other mechanisms such as Call Processing Language
 (CPL) [RFC3880].

 Note that, as indicated previously, user agents using the same
 connection to register and to receive traffic from the registrar,
 as described in [OUTBOUND], do not need to use the mechanism
 described in this section.

Rosenberg, et al. Standards Track [Page 24]

RFC 5360 Consent Framework October 2008

 A user agent being registered by a third party can be unable to use
 the SIP Identity, P-Asserted-Identity, or SIP digest mechanisms to
 prove to the registrar that the user agent is the owner of the URI
 being registered (e.g., sip:user@192.0.2.1), which is the recipient
 URI of the translation. In this case, return routability MUST be
 used.

5.11. Relays Generating Traffic towards Recipients

 Relays generating traffic towards recipients need to make sure that
 those recipients can revoke the permissions they gave at any time.
 The Trigger-Consent helps achieve this.

5.11.1. Relay’s Behavior

 A relay executing a translation that involves sending a request to a
 URI from which permissions were obtained previously SHOULD add a
 Trigger-Consent header field to the request. The URI in the
 Trigger-Consent header field MUST have a target-uri header field
 parameter identifying the target URI of the translation.

 On receiving a PUBLISH request addressed to the URI that a relay
 previously placed in a Trigger-Consent header field, the relay SHOULD
 send a MESSAGE request to the corresponding recipient URI with a
 permission document. Therefore, the relay needs to be able to
 correlate the URI it places in the Trigger-Consent header field with
 the recipient URI of the translation.

5.11.2. Definition of the Trigger-Consent Header Field

 The following is the augmented Backus-Naur Form (BNF) [RFC5234]
 syntax of the Trigger-Consent header field. Some of its elements are
 defined in [RFC3261].

 Trigger-Consent = "Trigger-Consent" HCOLON trigger-cons-spec
 *(COMMA trigger-cons-spec)
 trigger-cons-spec = (SIP-URI / SIPS-URI)
 *(SEMI trigger-param)
 trigger-param = target-uri / generic-param
 target-uri = "target-uri" EQUAL
 LDQUOT *(qdtext / quoted-pair) RDQUOT

 The target-uri header field parameter MUST contain a URI.

 The following is an example of a Trigger-Consent header field:

 Trigger-Consent: sip:123@relay.example.com
 ;target-uri="sip:friends@relay.example.com"

Rosenberg, et al. Standards Track [Page 25]

RFC 5360 Consent Framework October 2008

6. IANA Considerations

 Per the following sections, IANA has registered a SIP response code,
 two SIP header fields, and a SIP header field parameter.

6.1. Registration of the 470 Response Code

 IANA has added the following new response code to the Methods and
 Response Codes subregistry under the SIP Parameters registry.

 Response Code Number: 470
 Default Reason Phrase: Consent Needed
 Reference: [RFC5360]

6.2. Registration of the Trigger-Consent Header Field

 IANA has added the following new SIP header field to the Header
 Fields subregistry under the SIP Parameters registry.

 Header Name: Trigger-Consent
 Compact Form: (none)
 Reference: [RFC5360]

6.3. Registration of the Permission-Missing Header Field

 IANA has added the following new SIP header field to the Header
 Fields subregistry under the SIP Parameters registry.

 Header Name: Permission-Missing
 Compact Form: (none)
 Reference: [RFC5360]

6.4. Registration of the target-uri Header Field Parameter

 IANA has registered the ’target-uri’ Trigger-Consent header field
 parameter under the Header Field Parameters and Parameter Values
 subregistry within the SIP Parameters registry:

 Predefined
 Header Field Parameter Name Values Reference
 ---------------------------- --------------- --------- ---------
 Trigger-Consent target-uri No [RFC5360]

Rosenberg, et al. Standards Track [Page 26]

RFC 5360 Consent Framework October 2008

7. Security Considerations

 Security has been discussed throughout the whole document. However,
 there are some issues that deserve special attention.

 Relays generally implement several security mechanisms that relate to
 client authentication and authorization. Clients are typically
 authenticated before they can manipulate a relay’s translation logic.
 Additionally, clients are typically also authenticated and sometimes
 need to perform SPAM prevention tasks [RFC5039] when they send
 traffic to a relay. It is important that relays implement these
 types of security mechanisms. However, they fall out of the scope of
 this framework. Even with these mechanisms in place, there is still
 a need for relays to implement this framework because the use of
 these mechanisms does not prevent authorized clients to add
 recipients to a translation without their consent. Consequently,
 relays performing translations MUST implement this framework.

 Note that, as indicated previously, user agents using the same
 connection to register and to receive traffic from the registrar,
 as described in [OUTBOUND], do not need to use this framework.
 Therefore, a registrar that did not accept third-party
 registrations would not need to implement this framework.

 As pointed out in Section 5.6.1.3, when return routability tests are
 used to authenticate recipients granting or denying permissions, the
 URIs used to grant or deny permissions need to be protected from
 attackers. SIPS URIs provide a good tool to meet this requirement,
 as described in [RFC5361]. When store-and-forward servers are used,
 the interface between a user agent and its store-and-forward server
 is frequently not based on SIP. In such a case, SIPS cannot be used
 to secure those URIs. Implementations of store-and-forward servers
 MUST provide a mechanism for delivering encrypted and integrity-
 protected messages to their user agents.

 The information provided by the Pending Additions event package can
 be sensitive. For this reason, as described in [RFC5362], relays
 need to use strong means for authentication and information
 confidentiality. SIPS URIs are a good mechanism to meet this
 requirement.

 Permission documents can reveal sensitive information. Attackers may
 attempt to modify them in order to have clients grant or deny
 permissions different from the ones they think they are granting or
 denying. For this reason, it is RECOMMENDED that relays use strong
 means for information integrity protection and confidentiality when
 sending permission documents to clients.

Rosenberg, et al. Standards Track [Page 27]

RFC 5360 Consent Framework October 2008

 The mechanism used for conveying information to clients SHOULD ensure
 the integrity and confidentially of the information. In order to
 achieve these, an end-to-end SIP encryption mechanism, such as
 S/MIME, as described in [RFC3261], SHOULD be used.

 If strong end-to-end security means (such as above) are not
 available, it is RECOMMENDED that hop-by-hop security based on TLS
 and SIPS URIs, as described in [RFC3261], is used.

8. Acknowledgments

 Henning Schulzrinne, Jon Peterson, and Cullen Jennings provided
 useful ideas on this document. Ben Campbell, AC Mahendran, Keith
 Drage, and Mary Barnes performed a thorough review of this document.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3428] Campbell, B., Ed., Rosenberg, J., Schulzrinne, H.,
 Huitema, C., and D. Gurle, "Session Initiation Protocol
 (SIP) Extension for Instant Messaging", RFC 3428, December
 2002.

 [RFC5234] Crocker, D., Ed., and P. Overell, "Augmented BNF for
 Syntax Specifications: ABNF", STD 68, RFC 5234, January
 2008.

 [RFC5361] Camarillo, G., "A Document Format for Requesting Consent",
 RFC 5361, October 2008.

 [RFC5362] Camarillo, G., "The Session Initiation Protocol (SIP)
 Pending Additions Event Package", RFC 5362, October 2008.

Rosenberg, et al. Standards Track [Page 28]

RFC 5360 Consent Framework October 2008

 [RFC5363] Camarillo, G. and A.B. Roach, "Framework and Security
 Considerations for Session Initiation Protocol (SIP) URI-
 List Services", RFC 5363, October 2008.

9.2. Informative References

 [RFC3325] Jennings, C., Peterson, J., and M. Watson, "Private
 Extensions to the Session Initiation Protocol (SIP) for
 Asserted Identity within Trusted Networks", RFC 3325,
 November 2002.

 [RFC3880] Lennox, J., Wu, X., and H. Schulzrinne, "Call Processing
 Language (CPL): A Language for User Control of Internet
 Telephony Services", RFC 3880, October 2004.

 [RFC4453] Rosenberg, J., Camarillo, G., Ed., and D. Willis,
 "Requirements for Consent-Based Communications in the
 Session Initiation Protocol (SIP)", RFC 4453, April 2006.

 [RFC4474] Peterson, J. and C. Jennings, "Enhancements for
 Authenticated Identity Management in the Session
 Initiation Protocol (SIP)", RFC 4474, August 2006.

 [RFC4825] Rosenberg, J., "The Extensible Markup Language (XML)
 Configuration Access Protocol (XCAP)", RFC 4825, May 2007.

 [RFC4826] Rosenberg, J., "Extensible Markup Language (XML) Formats
 for Representing Resource Lists", RFC 4826, May 2007.

 [RFC5039] Rosenberg, J. and C. Jennings, "The Session Initiation
 Protocol (SIP) and Spam", RFC 5039, January 2008.

 [OUTBOUND] Jennings, C. and R. Mahy, "Managing Client Initiated
 Connections in the Session Initiation Protocol (SIP)",
 Work in Progress, June 2007.

Rosenberg, et al. Standards Track [Page 29]

RFC 5360 Consent Framework October 2008

Authors’ Addresses

 Jonathan Rosenberg
 Cisco
 Iselin, NJ 08830
 USA

 EMail: jdrosen@cisco.com
 URI: http://www.jdrosen.net

 Gonzalo Camarillo (editor)
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 EMail: Gonzalo.Camarillo@ericsson.com

 Dean Willis
 Unaffiliated
 3100 Independence Pkwy #311-164
 Plano, TX 75075
 USA

 EMail: dean.willis@softarmor.com

Rosenberg, et al. Standards Track [Page 30]

RFC 5360 Consent Framework October 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at
 http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Rosenberg, et al. Standards Track [Page 31]

